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Electrical impedance tomography is useful for
medical chest imaging

Lungs filled with air are resistive,
shown as blue.

Blood in the heart appears red,
as it is more conductive than air.



Note that EIT data collection involves
applying several current patterns
Saline and agar phantom

Phantom and data: Jon Newell,
Rensselaer Polytechnic Institute

Apply current pattern cos θ

Measure the resulting voltages
at all 32 electrodes



Note that EIT data collection involves
applying several current patterns
Saline and agar phantom

Phantom and data: Jon Newell,
Rensselaer Polytechnic Institute

Apply current pattern cos 2θ

Measure the resulting voltages
at all 32 electrodes



Note that EIT data collection involves
applying several current patterns
Saline and agar phantom

Phantom and data: Jon Newell,
Rensselaer Polytechnic Institute

Apply current pattern cos 3θ

Measure the resulting voltages
at all 32 electrodes



Note that EIT data collection involves
applying several current patterns
Saline and agar phantom

Phantom and data: Jon Newell,
Rensselaer Polytechnic Institute

Apply current pattern cos 4θ

Measure the resulting voltages
at all 32 electrodes



Note that EIT data collection involves
applying several current patterns
Saline and agar phantom

Phantom and data: Jon Newell,
Rensselaer Polytechnic Institute

Apply current pattern cos 5θ

Measure the resulting voltages
at all 32 electrodes



Note that EIT data collection involves
applying several current patterns
Saline and agar phantom

Phantom and data: Jon Newell,
Rensselaer Polytechnic Institute

Apply current pattern cos 6θ

Measure the resulting voltages
at all 32 electrodes



Note that EIT data collection involves
applying several current patterns
Saline and agar phantom

Phantom and data: Jon Newell,
Rensselaer Polytechnic Institute

Apply current pattern cos 7θ

Measure the resulting voltages
at all 32 electrodes



Note that EIT data collection involves
applying several current patterns
Saline and agar phantom

Phantom and data: Jon Newell,
Rensselaer Polytechnic Institute

Apply current pattern cos 8θ

Measure the resulting voltages
at all 32 electrodes



Note that EIT data collection involves
applying several current patterns
Saline and agar phantom

Phantom and data: Jon Newell,
Rensselaer Polytechnic Institute

Apply current pattern cos 9θ

Measure the resulting voltages
at all 32 electrodes



Note that EIT data collection involves
applying several current patterns
Saline and agar phantom

Phantom and data: Jon Newell,
Rensselaer Polytechnic Institute

Apply current pattern cos 10θ

Measure the resulting voltages
at all 32 electrodes



Note that EIT data collection involves
applying several current patterns
Saline and agar phantom

Phantom and data: Jon Newell,
Rensselaer Polytechnic Institute

Apply current pattern cos 11θ

Measure the resulting voltages
at all 32 electrodes



Note that EIT data collection involves
applying several current patterns
Saline and agar phantom

Phantom and data: Jon Newell,
Rensselaer Polytechnic Institute

Apply current pattern cos 12θ

Measure the resulting voltages
at all 32 electrodes



Note that EIT data collection involves
applying several current patterns
Saline and agar phantom

Phantom and data: Jon Newell,
Rensselaer Polytechnic Institute

Apply current pattern cos 13θ

Measure the resulting voltages
at all 32 electrodes



Note that EIT data collection involves
applying several current patterns
Saline and agar phantom

Phantom and data: Jon Newell,
Rensselaer Polytechnic Institute

Apply current pattern cos 14θ

Measure the resulting voltages
at all 32 electrodes



Note that EIT data collection involves
applying several current patterns
Saline and agar phantom

Phantom and data: Jon Newell,
Rensselaer Polytechnic Institute

Apply current pattern cos 15θ

Measure the resulting voltages
at all 32 electrodes



Note that EIT data collection involves
applying several current patterns
Saline and agar phantom

Phantom and data: Jon Newell,
Rensselaer Polytechnic Institute

Apply current pattern cos 16θ

Measure the resulting voltages
at all 32 electrodes



Here is a reconstruction of the conductivity,
computed using a nonlinear Fourier transform
Saline and agar phantom

[Isaacson, Mueller, Newell & S 2004]
[Montoya 2012]

D-bar reconstruction

Cut-off frequency R = 4



The inverse conductivity problem introduced by
Alberto Calderón is a mathematical model for EIT

Ω

Let Ω ⊂ R2 be the unit disc and let
conductivity σ : Ω→ R satisfy

0 < M−1 ≤ σ(z) ≤ M.

Applying voltage f at the boundary
∂Ω leads to the elliptic PDE{

∇ · σ∇u = 0 in Ω,
u|∂Ω = f .

The Dirichlet-to-Neumann map is a
model for boundary measurements

Λσ : f 7→ σ
∂u

∂~n
|∂Ω.

Calderón’s problem is to
recover σ from the knowledge of Λσ.

This is a nonlinear task and an
ill-posed inverse problem.



Ill-posed inverse problems are defined
as opposites of well-posed direct problems

Hadamard (1903): a problem is well-posed
if the following conditions hold.

1. A solution exists,
2. The solution is unique,
3. The solution depends
continuously on the input.

Well-posed linear direct EIT problem:
Input σ, find infinite-precision data Λσ.

Ill-posed nonlinear inverse EIT problem:
Input noisy data Λδσ, reconstruct σ.



We illustrate the ill-posedness of EIT
using a simulated example

σ1

σ2



We apply the voltage distribution f (θ) = cos θ
at the boundary of the two different phantoms

σ1

σ2

u1
θ

u2



The measurement is the distribution of
current through the boundary

σ1

σ2

u1
θ

u2

σ1
∂u1

∂~n

θ

σ2
∂u2

∂~n

θ



The current data are very similar,
although the conductivities are quite different

σ1

σ2

σ1
∂u1

∂~n
σ2
∂u2

∂~n

0 π

2
π 3π

2
2π



Let us apply the more oscillatory distribution
f (θ) = cos 2θ of voltage at the boundary

σ1

σ2

u1

u2



The measurement is again the distribution of
current through the boundary

σ1

σ2

u1

u2

σ1
∂u1

∂~n

θ

σ2
∂u2

∂~n

θ



The current distribution measurements
are almost the same

σ1

σ2

σ1
∂u1

∂~n
σ2
∂u2

∂~n

0 π

2
π 3π

2
2π



EIT is an ill-posed problem: big differences in
conductivity cause only small effect in data

σ1

σ2

cos θ

cos 2θ

cos 3θ

cos 4θ

cos 5θ

cos 6θ



The forward map F : X ⊃ D(F )→ Y
does not have a continuous inverse!

Model space X = L∞(Ω)

Data space
Y = L(H1/2(∂Ω),H−1/2(∂Ω))

D(F ) F (D(F ))

σ

Λσ

Λσδ
δ

F

Furthermore, the noisy data Λδσ does not belong to the range F (D(F )).
So Hadamard’s conditions 1 and 3 fail for EIT. How about uniqueness?



Ghosts, or invisible structures, when using point
electrodes in electrical impedance tomography

[Chesnel, Hyvönen & Staboulis 2014]



Regularization means constructing a continuous
map Γα : Y → X that inverts F approximately

Model space X = L∞(Ω)

Data space
Y = L(H1/2(∂Ω),H−1/2(∂Ω))

D(F ) F (D(F ))

σ

Λσ

Λσδ
δ

F

Γα
Γα(Λδσ)

Regularization must be based on combining the incomplete measurement
data with a priori information about the conductivity.



References about foundations of
Electrical Impedance Tomography

Classical review article by the
legendary EIT group of RPI:
Margaret Cheney, David Isaacson
and Jon Newell (1999), Electrical
Impedance Tomography.
SIAM Review 41.

Mathematical treatment of
electrode measurements:
Erkki Somersalo, Margaret Cheney
and David Isaacson (1992),
Nuutti Hyvönen (2009).

More recent review of EIT:
Jennifer Mueller and S (2012)
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This part is a joint work with

David Isaacson, Rensselaer Polytechnic Institute, USA

Kim Knudsen, Technical University of Denmark

Matti Lassas, University of Helsinki, Finland

Jon Newell, Rensselaer Polytechnic Institute, USA

Jennifer Mueller, Colorado State University, USA



There exists a nonlinear Fourier transform
adapted to electrical impedance tomography
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The nonlinear Fourier transform can be recovered
from infinite-precision EIT measurements

Λσ -
BIE

@
@
@
@
@R

Nonlinear IFFT

6
Ideal
measurement

[Nachman 1996]



Measurement noise prevents the recovery of the
nonlinear Fourier transform at high frequencies

-
BIE

@
@
@
@
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Nonlinear IFFT

6
Practical
measurement



We truncate away the bad part in the transform;
this is a nonlinear low-pass filter

-
BIE

6
Practical
measurement

-
Lowpass



The D-bar method is a regularization strategy for
reconstructing the full conductivity distribution

-
BIE

?

Nonlinear
IFFT

6
Practical
measurement

-
Lowpass

[S, Mueller & Isaacson 2000]
[Knudsen, Lassas, Mueller & S 2009]



This is a brief history of the two-dimensional
regularized D-bar method for EIT

1966 Faddeev: Complex geometric optics (CGO) solutions
1987 Sylvester and Uhlmann: CGO solutions for inverse
boundary-value problems; uniqueness for 3D EIT with smooth
conductivities and infinite-precision data
1988 R. G. Novikov: Core ideas of the D-bar method
1988 Nachman: D-bar method for 3D EIT
1996 Nachman: Uniqueness and reconstruction for 2D EIT
with C 2 conductivities and infinite-precision data
1999 S: First numerical evaluation of CGO solutions
2000 S, Mueller and Isaacson: Numerical implementation of
Nachman’s proof using a Born approximation
2006 Isaacson, Mueller, Newell and S: Application of the D-bar
method to EIT data measured from a human subject
2009 Knudsen, Lassas, Mueller and S: Regularization proof



Nachman (1996) transforms to the Schrödinger
equation and uses CGO solutions

Define a potential q by setting q(z) ≡ 0 for z outside Ω and

q(z) =
∆
√
σ(z)√
σ(z)

for z ∈ Ω.

Then q ∈ C0(Ω). We look for solutions of the Schrödinger equation

(−∆ + q)ψ( · , k) = 0 in R2

parametrized by k ∈ C \ 0 and satisfying the asymptotic condition

e−ikzψ(z , k)− 1 ∈W 1,p̃(R2),

where p̃ > 2 and ikz = i(k1 + ik2)(x + iy).



The CGO solutions are constructed using a
generalized Lippmann-Schwinger equation

Define µ(z , k) = e−ikzψ(z , k). Then (−∆ + q)ψ = 0 implies

(−∆− 4ik∂z + q)µ( · , k) = 0, (1)

where the D-bar operator is defined by ∂z = 1
2( ∂
∂x + i ∂∂y ).

A solution of (1) satisfying µ(z , k)− 1 ∈W 1,p̃(R2) can be
constructed using the Lippmann-Schwinger type equation

µ = 1− gk ∗ (qµ),

where gk satisfies (−∆− 4ik∂z)gk = δ and is defined by

gk(z) =
1

4π2

∫
R2

e iz·ξ

|ξ|2 + 2k(ξ1 + iξ2)
dξ1dξ2.



One of the breakthroughs in Nachman’s 1996
article is showing uniqueness of µ

A solution of (−∆− 4ik∂z + q)µ( · , k) = 0 satisfying
µ(z , k)− 1 ∈W 1,p̃(R2) can be constructed using the formula

µ− 1 = [I + gk ∗ (q· )]−1(gk ∗ q),

provided that the inverse operator exists.

Now q ∈ Lp(R2) with 1 < p < 2 and 1/p̃ = 1/p − 1/2, and

q· : W 1,p̃(R2)→ Lp(R2) is bounded,
gk∗ : Lp(R2)→W 1,p̃(R2) is compact.

Thus I + gk ∗ (q· ) : W 1,p̃(R2)→W 1,p̃(R2) is Fredholm of index
zero, and Nachman proved injectivity for all k 6= 0.

Progress on invertibility of I + gk ∗ (q· ): Music, Perry & S (2013),
Music (2014), Lakshtanov & Vainberg (2017)



The non-physical scattering transform t(k)
is a nonlinear Fourier transform

We denote z = x + iy ∈ C and z = (x , y) ∈ R2. The scattering
transform t : C→ C is defined by

t(k) :=

∫
R2

e ikzq(z)ψ(z , k) dxdy .

Sometimes t(k) is called the nonlinear Fourier transform of q.
This is because asymptotically ψ(z , k) ∼ e ikz as |z | → ∞,
and substituting e ikz in place of ψ(z , k) above gives∫

R2
e i(kz+kz)q(z)dxdy =

∫
R2

e−i(−2k1,2k2)·(x ,y)q(z)dxdy

= q̂(−2k1, 2k2).



Solve boundary integral equation

ψ( · , k)|∂Ω = e ikz − Sk(Λσ − Λ1)ψ

for every complex number k ∈ C \ 0.

Evaluate the scattering transform:

t(k) =

∫
∂Ω

e ikz(Λσ − Λ1)ψ(·, k) ds.

Fix z ∈ Ω. Solve D-bar equation

∂

∂k
µ(z , k) =

t(k)

4πk
e−i(kz+kz)µ(z , k)

with µ(z , · )− 1 ∈ Lr ∩ L∞(C).

Reconstruct: σ(z) = (µ(z , 0))2.

Solve boundary integral equation

ψδ( · , k)|∂Ω = e ikz − Sk(Λδσ − Λ1)ψδ

for all 0 < |k | < R = − 1
10 log δ.

For |k | ≥ R set tδR(k) = 0. For |k | < R

tδR(k) =

∫
∂Ω

e ikz(Λδσ − Λ1)ψδ(·, k) ds.

Fix z ∈ Ω. Solve D-bar equation

∂

∂k
µδR(z , k) =

tδR(k)

4πk
e−i(kz+kz)µδR(z , k)

with µδR(z , · )− 1 ∈ Lr ∩ L∞(C).

Set Γ1/R(δ)(Λδσ) := (µδR(z , 0))2.

Infinite-precision data: Practical data:



Nonlinear low-pass filtering yields a regularization
strategy with convergence speed

Theorem (Knudsen, Lassas, Mueller & S 2009)
Fix a conductivity σ ∈ D(F ). Assume given noisy data Λδσ satisfying

‖Λδσ − Λσ‖Y ≤ δ.

Then Γα with the choice

R(δ) = − 1
10

log δ, α(δ) =
1

R(δ)
,

is well-defined, admissible and satisfies the estimate

‖Γα(δ)(Λδσ)− σ‖L∞(Ω) ≤ C (− log δ)−1/14.

See also [Lytle, Perry & S 2019]



Regularized reconstructions from simulated data
with noise amplitude ‖δ‖ = ‖Λδσ−Λσ‖Y

‖δ‖ ≈ 10−6 ‖δ‖ ≈ 10−5 ‖δ‖ ≈ 10−4 ‖δ‖ ≈ 10−3 ‖δ‖ ≈ 10−2

The percentages are the relative square norm errors in the reconstructions.



Here are the D-bar reconstructions from
simulated EIT data using frequency cutoff R = 4

σ1

σ2



D-bar images can be sharpened by Deep Learning

[Hamilton & Hauptmann 2017]



Medical application of EIT and the D-bar method:
quantifying air-trapping in cystic fibrosis patients
All results on this slide are from
Jennifer Mueller’s group at Colorado
State University.

Images: ventilation-perfusion index
maps, computed from three subjects
at Children’s Hospital Colorado using
EIT and the D-bar method.

Dark blue regions are well-perfused
but poorly ventilated.

Radiologist’s report for Subject B:
extensive regions of air trapping, re-
gional to the lung areas affected by
plugging, approximately 50% of both
lungs.

Healthy control
Average index 0.46

CF Subject A
Average index 0.34

CF Subject B
Average index 0.10
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The results in this part are a joint work with

Juan Pablo Agnelli, Universidad Nacional de Córdoba, Argentina

Aynur Çöl, Sinop university, Turkey

Allan Greenleaf, University of Rochester, NY, USA

Matti Lassas, University of Helsinki, Finland

Rashmi Murthy, University of Helsinki, Finland

Matteo Santacesaria, University of Genoa, Italy

Gunther Uhlmann, University of Washington, USA



This is an X-ray tomography machine (not EIT)
W
ikim

edia
com

m
ons



Simple example of tomographic imaging
with a double-disc target

https://youtu.be/5DUGTXd26nA

https://youtu.be/5DUGTXd26nA


We can back-project the measured data into
the image, integrating over all directions

https://youtu.be/5DUGTXd26nA

https://youtu.be/5DUGTXd26nA


Final FBP reconstruction involves filtering
on top of the back-projection

Multiplication by |ξ|

(Calderón’s operator)

FFT
IFFT



Medical application: classifying stroke
Ischemic stroke:
low conductivity.
CT image from
Jansen 2008

Hemorrhagic stroke:
high conductivity.
CT image from
Nakano et al. 2001

Same symptoms in both cases!



Back to EIT: analyse Complex Geometric Optics
solutions using complex two-vectors

Consider complex two-vectors η ∈ C2 of the form

η = (θ1 + iθ2,−θ2 + iθ1),

where θ = θ1 + iθ2 ∈ C is a unitary complex number: |θ| = 1.

Denote a planar point by x = (x1, x2) ∈ R2. Because η · η = 0 we
see that e iτη ·x = 0 is harmonic in x .

We next analyse solutions of the conductivity equation
∇ · σ∇u = 0 of the form

u(x) = e iτη ·xw(x , τ).

(They are connected to the previously discussed CGO solutions via
k = τθ and z = x1 + ix2, since then e ikz = e iτθz = e iτη ·x .)



Since u(x) = e iτη ·xw(x , τ) satisfies the conductivity equation,

0 =
1

σ(x)
∇ · (σ(x)∇u(x))

= (∆ +
1
σ

(∇σ) · ∇)(e iτη ·xw(x , τ))

=

(
∆w(x , τ) + 2iτη · ∇w(x , τ) + (

1
σ
∇σ) · (∇+ iτη)w(x , τ)

)
e iτη ·x .

Hence, we have

∆w(x , τ) + 2iτη · ∇w(x , τ) + (
1
σ
∇σ) · (∇+ iτη)w(x , τ) = 0.



New trick: apply one-dimensional Fourier
transform to the complex spectral parameter

Let ŵ(x , t) be the Fourier transform of w(x , τ) in the τ variable:

ŵ(x , t) = Fw(x , t) =

∫ ∞
−∞

e−itτw(x , τ) dτ.

We call t the pseudo-time corresponding to complex frequency τ .
Then equation

∆w(x , τ) + 2iτη · ∇w(x , τ) + (
1
σ
∇σ) · (∇+ iτη)w(x , τ) = 0

yields

∆ŵ(x , t) + 2η
∂

∂t
· ∇ŵ(x , t) + (

1
σ
∇σ) · (∇+ η

∂

∂t
)ŵ(x , t) = 0.



Complex principal type operator leads to
singularities propagating along leaves

Denote η = ηR + iηI . The principal part of the equation

∆ŵ(x , t) + 2η
∂

∂t
· ∇ŵ(x , t) +

1
σ

(∇σ) · (∇+ η
∂

∂t
)ŵ(x , t) = 0

is given by the complex principal type operator

∆ + 2η
∂

∂t
· ∇ =

(
∆ + 2ηR

∂

∂t
· ∇
)

+ i

(
2ηI

∂

∂t
· ∇
)
,

in the sense of Duistermaat and Hörmander (1972).

For a real principal type operator the characteristic singularities
propagate along one-dimensional rays. For instance, for the wave
equation the light-like singularities propagate along light rays.

For a complex principal type operator the characteristic singularities
propagate along two-dimensional surfaces called leaves.



We use propagation and reflection of singularities
along leaves for detecting inclusions

Here the magenta plane wave hits the blue surface, producing light
blue reflected waves.



We use the Beltrami-type complex geometric
optics (CGO) solutions

Set µ := (1− σ)/(1 + σ). Write f = u + iv and note that

∂z fµ = µ∂z fµ ⇔ ∇ · σ∇u = 0 and ∇ · σ−1∇v = 0.

The CGO solutions of [Astala-Päivärinta 2006] have the form

fµ(z , k) = e ikz(1 + ω+(z , k)),

f−µ(z , k) = e ikz(1 + ω−(z , k)),

with the asymptotic condition

ω±(z , k) = O(
1
z

) as |z | → ∞.

Here ikz = i(k1 + ik2)(x + iy) and ∂z = 1
2(∂x + i∂y ).



This is a brief history of computational solution
methods for the Beltrami CGO solutions

1987 Sylvester and Uhlmann: Introduction of CGO solutions
2000 S, Mueller and Isaacson: Numerical CGOs
2006 Astala and Päivärinta: Original Beltrami-type construction

2010 Astala, Mueller, Päivärinta and S:
First numerical solution method

2011 Astala, Mueller, Päivärinta, Perämäki and S:
Novel EIT reconstruction method

2012 Huhtanen and Perämäki:
Preconditioned Krylov subspace method for real-linear systems

2014 Astala, Päivärinta, Reyes and S:
Computational high-frequency experiments

2018 Greenleaf, Lassas, Santacesaria, S and Uhlmann:
Virtual Hybrid Edge Detection based on 1D Fourier technique



Recovery by “filtered back-projection”

Theorem. (Greenleaf, Lassas, Santacesaria, S and Uhlmann 2018)
Define averaged operators T±j for j = 1, 2, 3, . . . by the complex
contour integral:

T±j µ(t, e iϕ) =
1
2πi

∫
∂Ω
ω̂±j (z , t, e iϕ)dz ,

Then we have a filtered back-projection formula

(−∆)−1/2(T±1 )∗T±1 µ = µ.

Compare to X-ray tomography FBP formula (−∆)1/2R∗Rf = f .



New result: inverse scattering methods can
transform EIT into “X-ray tomography”

[Greenleaf, Lassas, Santacesaria, S and Uhlmann 2018]
https://www.youtube.com/watch?v=37yOCfBfRJk

https://www.youtube.com/watch?v=37yOCfBfRJk


Conductivity Filtered back-projection “Λ-tomography”



The idea would be to equip every ambulance
with an EIT device for classifying strokes

In David Holder’s lab at UCL



We have a collaboration network in place
for the stroke-EIT project

Project funded for 2017–2020
• Jari Hyttinen & Antti Paldanius
(U Tampere)
• Ville Kolehmainen, Asko Hänninen
& Jussi Toivanen (U Eastern Finland)
• S, Matti Lassas
& Rashmi Murthy (U Helsinki)

Finnish collaboration:
Stefan Björkman (U Helsinki)
Valentina Candiani (Aalto U)
Antti Hannukainen (Aalto U)
Nuutti Hyvönen (Aalto U)

Nina Forss
Daniel Strbian

International collaboration:
Juan Pablo Agnelli (U Córdoba)
Melody Alsaker (Gonzaga U)
Aynur Çöl (Sinop U)
Sarah Hamilton (Marquette U)
Andreas Hauptmann (UCL)
Jennifer Mueller (CSU),
Toshiaki Yachimura (Tohoku)



We can see the difference in conductivity reflected
in the VHED projections (blue and red graphs)



Given unrealistic-precision EIT measurements
on full boundary we can classify the stroke easily

∫ 60

−60
Φ60(τ)e−itτω±(z , τ, e iϕ) dτ



Remember the noise-induced stable and unstable
parts of the nonlinear frequency domain



Practical EIT measurements blur the information
due to heavily windowed Fourier transform

∫ 4

−4
Φ4(τ)e−itτω±(z , τ, e iϕ) dτ



Perhaps machine learning will help us?



We simulate a set of 5000 conductivities with
ischemic/hemorrhacig stroke on right hemisphere



We simulate a set of 5000 conductivities with
ischemic/hemorrhacig stroke on right hemisphere



We simulate a set of 5000 conductivities with
ischemic/hemorrhacig stroke on right hemisphere



Preliminary results on using VHED as a nonlinear
feature for machine learning

We trained each Fully Connected Neural Network (FCNN) using
5000 disc inclusions and then we tested each network using 3500
samples corresponding to disc inclusions not used for training.

We repeated this process 10 times and then we computed the
average accuracy of each network in each data set.

30
ND matrix 0.979
DN matrix 0.970
VHED 0.997

[Agnelli, Çöl, Murthy and Siltanen, unpublished results]
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This part is a joint work with

Ryan Croke, University of Colorado—Boulder, USA

Matti Lassas, University of Helsinki, Finland

Jennifer Mueller, Colorado State University, USA

Michael Music, University of Michigan, USA

Peter Perry, University of Kentucky, USA

Andreas Stahel, BFH-TI Biel, Switzerland



Korteweg and de Vries formulated in 1895 an
equation for waves in shallow water

uτ + uxxx + 6uux = 0, x ∈ R, τ ≥ 0

Assumptions: wave height is small compared to the depth,
which in turn is small compared to the length of the wave.

The KdV equation is a nonlinear, dispersive wave equation.

It allows solitary wave solutions observed by Russell (1845),
and was studied by Boussinesq (1871) and lord Rayleigh (1876).



Gardner, Greene, Kruskal and Miura (1967) found
a striking connection between the KdV equation
and Schrödinger scattering

(λn, cn, R(k)) −−−→ (λn, cne
4k3

n τ , R(k)e8ik3τ )x y
q0(x)

KdV−−−→ qτ (x)

The inverse scattering step is due to
1946 Borg
1949 Levinson
1951 Gelfand-Levitan
1952 Marchenko
1953 Krein



Novikov-Veselov equation is the most natural
2D generalization of the KdV equation

Korteveg-de Vries equation, dimension (1+1):

q̇ +
∂3q

∂x3 + 6q
∂q

∂x
= 0.

Kadomtsev-Petviashvili equation, dimension (2+1):

∂

∂x

(
q̇ +

∂3q

∂x3 + 6q
∂q

∂x

)
= ±∂

2q

∂y2 .

Novikov-Veselov equation, dimension (2+1):

q̇ + ∂3
zq + ∂

3
zq − 3∂z(qv)− 3∂z(qv) = 0, ∂zq = ∂zv .

Here z = x + iy and ∂z = 1
2( ∂∂x + i ∂∂y ).



The inverse scattering method is one way
to solve the Novikov-Veselov equation

-t0(k) tτ (k)
exp(iτ(k3 + k

3
))·

6

?

QT

q0(z)

T
6

?

Q

-nonlinear NV evolution
qτ (z),



The direct and inverse nonlinear Fourier
transforms T and Q are defined as follows:

The direct transform qτ 7→ T qτ is given by

(T qτ )(k) =

∫
R2

e ikzqτ (z)ψτ (z , k)dz ,

where (−∆ + qτ )ψτ ( · , k) = 0 and ψτ (z , k) ∼ e ikz as |z | → ∞.

The inverse transform tτ 7→ Qtτ is given by

(Qtτ )(z) =
i

π2∂z

∫
C

tτ (k)

k
e−ikz ψτ (z , k)dk,

where ψτ (z , k) = e ikzµτ (z , k) and µτ satisfies the D-bar equation

∂

∂k
µτ (z , k) =

tτ (k)

4πk
e−i(kz+kz)µτ (z , k), µτ (z , · ) ∼ 1.



Zero-energy inverse scattering & NV equation

1984 Novikov & Veselov: Periodic case.

1987 Boiti, Leon, Manna & Pempinelli: Formal non-periodic
analysis assuming no exceptional points.

1993 Tsai: Formal analysis assuming no exceptional points.

1996 Nachman: Conductivity-type q0 have no exceptional points.

2007 Lassas, Mueller & S: Inverse scattering evolution qIS
τ

well-defined for conductivity-type initial data q0.

2012 Lassas, Mueller, S & Stahel: Evolution qIS
τ preserves

conductivity-type, numerical evidence for qIS
τ = qNV

τ .

2012 Perry: qIS
τ = qNV

τ holds for conductivity-type q0.

2013 Music, Perry & S: Supercritical exceptional points exist.
2014 Music: Subcritical q0 have no exceptional points.

2015 Croke, Mueller, Music, Perry, S & Stahel: Review of NV eq.

2015 Music & Perry: Global existence for critical and subcritical q0.

2016 Angelopoulos: Local well-posedness of NV equation.



Let’s look at an example. Here is a smooth and
rotationally symmetric conductivity function σ(z)

y x
|z |



This is the initial potential q0(z) = σ−1/2(z)∆σ1/2(z)

y x
|z |



This is the initial scattering transform t0(k)

k2 k1 |k |



This is the Novikov-Veselov evolution



Dynamics of NV solutions for λ > 0 (A. Stahel);
no apparent singularities

λ

This is in accordance with [Music and Perry 2015]



Dynamics of NV solutions for λ < 0 (A. Stahel),
seemingly with blowup in finite time

λ



Outline

Electrical impedance tomography (EIT)

Nonlinear Fourier transform and the D-bar method

Virtual Hybrid Edge Detection (VHED)

Solving the Novikov-Veselov equation

Conclusion



EIT is the zero-energy CGO case; positive and
negative energies have applications as well

1986, 1988, 1992, 1999 R. G. Novikov

1988 Nachman

2013 R. G. Novikov and Santacesaria

2013 Santacesaria

2016 Kazeykina and Munõz

Computational studies:

2016 Tamminen, Tarvainen and S:
Negative-energy D-bar method for diffuse optical tomography

2016 de Hoop, Lassas, Santacesaria, S and Tamminen:
Positive-energy D-bar method for acoustic tomography



Challenges for young mathematicians

Nonlinear Fourier transforms hold enormous promise for many
practical applications. There is a lot of delightfully nonlinear
research work to be done both in the theoretical and computational
aspects.

Exceptional points for potentials seem to correspond to finite-time
blowup for Novikov-Veselov evolutions. There is yet no theoretical
understanding of this.



Links to open computational resources

Open EIT datasets:
•Finnish Inverse Problems Society (FIPS) dataset page

Reconstruction algorithms: FIPS Computational Blog
•The D-bar Method for EIT—Simulated Data
•The D-bar Method for EIT—Experimental Data

For these slides see: http://www.siltanen-research.net/talks.html

http://fips.fi/dataset.php
https://blog.fips.fi/tomography/eit/the-d-bar-method-for-electrical-impedance-tomography-simulated-data/
https://blog.fips.fi/tomography/eit/the-d-bar-method-for-electrical-impedance-tomography-experimental-data/
http://www.siltanen-research.net/talks.html


Thank you for your attention!



Negative-energy NV by Kazeykina and Klein 2017

Initial data v(x , y , 0) = β exp(−x2 − y 2)
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